Strength of Mechanical Constructions

Analysis of shell structures

Paweł JASION, PhD. Eng.

e-mail: pawel.jasion@put.poznan.pl
www:pawel.jasion.pracownik.put.poznan.pl

Poznan University of Technology Institute of Applied Mechanics Division of Strength of Materials and Structures

Strength of Mechanical Constructions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Poznań, 2025

- 2 Definition and analysis of shell structures
- **3** Membrane theory
- 4 Actual problems in analysis of shells
- 5 Exemplary analysis of thin-shell

Poznań, 2025

Strength of Mechanical Constructions

Contents

1 Application of shell structures

- 2 Definition and analysis of shell structures
- 3 Membrane theory
- 4 Actual problems in analysis of shells
- 5 Exemplary analysis of thin-shell

Application of shell structures

Application of shells

• various applications

Strength of Mechanical Constructions

・ロト ・ 四ト ・ ヨト ・ ヨト

Application of shells

Broad application of shells comes from their advantages which are:

- effective load carrying
- high strenght-to-mass ratio
- high stiffness
- covering large spaces
- aesthetics

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Contents

Application of shell structures

2 Definition and analysis of shell structures

3 Membrane theory

4 Actual problems in analysis of shells

5 Exemplary analysis of thin-shell

Poznań, 2025

Strength of Mechanical Constructions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Definition of shell

Shell

structural element the thickness of which is much smaller than the other two dimensions

Definition of shell

- depending on the thickness one can defined:
 - thin shells, for which $(t/R)_{max} < 1/20$
 - thick shells, for which $(t/R)_{max} > 1/20$
- in the above *t* is the thickness of the shell and *R* is the radius of curvature

Shells of revolution

- the most popular shape of shell is a shell of revolution
- depending on the geometry one can distinguish shells with positive, negative or zero Gaussian curvature, defined as

Definition of shell

• geometry of shell of revolution is determined by two main radii of curvature: meridional R_1 and circumferential R_2

• differential relation: $\frac{d(R_2 \sin \theta)}{d\theta} = R_1 \cos \theta$

Load carrying mechanism

- the shell transfers the transverse load mainly through tensile and compressive stresses membrane stress
- they are equally distributed through the thickness of the shell; such state of sterss is called the membrane state of stress
- the advantage of membrane state is that
 - it allows to take full advantages of the mechanical properties of the material in pure tension, all fibers on the cross section are equally strained
 - for a given value of load the membrane stress are always smaller than the bending ones

Load carrying mechanism

- the effectiveness of the shell as a structural element is related with they curvature and thin-walld
- thanks to curvature, the shell gains spatial rigidity, and the load is distributed to membrane forces

Load carrying mechanism

- thanks to thin-walled character, the shell gains lightness, and locally occurring bending stresses quickly disappear
- the disadvantage of thin walles is that in the case of compressive membrane stresses, the shell may buckle

ヘロア 人間 アメヨア 人間 アー

Internal forces in shell

The main load carrying by plates are transverse forces – pressure.

Internal forces which appear in the plate, and induce the deformation, are

- normal forces (tension, compression)
- shear forces (in-plane shear, transverse shear)
- bending moment
- twisting moment

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Contents

- Application of shell structures
- 2 Definition and analysis of shell structures

3 Membrane theory

- 4 Actual problems in analysis of shells
- 5 Exemplary analysis of thin-shell

イロト イポト イヨト イヨト

Poznań, 2025

- for simplification it is often assumed that whole load is carried out by in-plane stresses
- this approach is called membrane theory
- it often works for these part of shells which are far from supporting elements, thickness variations or point loads

・ロット (母) ・ ヨ) ・ ・ ヨ)

Limitations to the use of membrane theory

For the membrane theory to be applied, the following conditions must be met:

- the edges of the shell are free of transverse shear forces and moments; loads applied to the edges of the shell must lie in a plane tangent to the central surface,
- normal displacements and rotations on the edge of the shell are allowed; this means that the edges are free to move in the direction normal to the central surface,
- the surface of the shell must be smooth and continuous,
- the components loading the surface and edges must be smooth and continuous functions of coordinates.

イロト イポト イヨト イヨト 三日

Membrane theory

Limitations to the use of membrane theory

• failure to meet any of the above conditions will result in bending stresses in the shell

ヘロト 人間 ト 人造 ト 人造 ト

э

Poznań, 2025

Membrane theory

Limitations to the use of membrane theory

- when designing the tank, one should avoid the appearance of bending stresses or strive to minimize them
- bending stresses decrease rapidly as you move away from their source; the thinner the shell, the faster the decay is

Poznań, 2025

Strength of Mechanical Constructions

Simple cases Spherical shell

• let's consider the stress in the spherical tank of the radius R and thickness t

イロト イポト イヨト イヨト

20/41

Simple cases Cylindrical shell

• let's consider the stress in the cylindrical tank of the radius R and thickness t, closed with two dished-heads

Using the memebrane theory, calculate the main stress components as well as von Mises stress for cylindrical tank closed with hemispherical dishedheads. Given parameters:

- radius of the tank: R = 500 mm,
- thickness of the tank: t = 5 mm,
- length of the tank: L = 6000 mm,
- internal pressure: p = 1 MPa.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Contents

- Application of shell structures
- 2 Definition and analysis of shell structures
- 3 Membrane theory
- 4 Actual problems in analysis of shells
- 5 Exemplary analysis of thin-shell

Actual problems in analysis of shells

Motivation of the research

Disadvantages of classical cylindrical tanks

The goal of the research is to:

• obtain smooth stress distribution along the whole meridian,

Poznań, 2025

The goal of the research is to:

• increase the buckling load,

ヘロト 人間 トメヨトメヨト

э

The goal of the research is to:

• stabilise the post-buckling behaviour,

・ロト ・ 四ト ・ ヨト ・ ヨト

27/41

The goal of the research is to:

• stabilise the post-buckling behaviour.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Actual problems in analysis of shells

Istniejące rozwiązania

Efekt brzegowy można wyeliminować poprzez:

- zmianę kształtu południka
 - zmiana kształtu dna zbiornika walcowego

A D > A B > A B > A B >

Actual problems in analysis of shells

Istniejące rozwiązania

Efekt brzegowy można wyeliminować poprzez:

- zmianę kształtu południka
 - zmiana kształtu dna zbiornika walcowego

Poznań, 2025

Strength of Mechanical Constructions

Existing solutions

The edge effect can be eliminated by:

- change of the meridian's shape
 - change the tank's shape

Existing solutions

Critical load can be increased by:

- increase of the shell's thickness,
- introduction of stiffening rings,
- change of the meridian's shape.

Poznań, 2025

Strength of Mechanical Constructions

- B

Existing solutions

Stabilisation of the post-critical behaviour can be achieved by:

- introduction of stiffening rings
- introduction of initial pretention,
- change of the meridian's shape.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contents

- Application of shell structures
- 2 Definition and analysis of shell structures
- 3 Membrane theory
- 4 Actual problems in analysis of shells
- **5** Exemplary analysis of thin-shell

Poznań, 2025

Strength of Mechanical Constructions

(日)

34/41

Complex analysis of shell structure

Complex analysis of a shell structure should contains:

- pre-buckling analysis stress and deformation,
- linear buckling analysis critical load and critical load,
- post-buckling analysis equilibrium path.

Exemplary analysis of thin-shell

Geometry of Cassini's oval

- equation of the curve: $((x a^2) + y^2)((x + a^2) + y^2) = b^4$
- defined by points: $r_1 imes r_2 = b^2$

Geometry of Cassini's oval

ヘロト ヘヨト ヘヨト

FE model

Assumptions: • $V = 5 \text{ m}^3$ • m = 500 kgMaterial: • *E* = 200000 MPa • $\nu = 0.3$ Finite element shell element 8 nodes

• 6 DOF

イロト イポト イヨト イヨト

Poznań, 2025

The results of Cassini oval analysis

Influence of the curvature of the mid-length of the shell on the value of the critical load

- increasing of the positive curvature increases of the critical load
- decreasing of the negative curvature decreases of the critical load

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Exemplary analysis of thin-shell

The results of Cassini oval analysis

Equilibrium paths for selected shells

• for shells of a certain curvature, equilibrium paths starts to stabilise

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Literatura

- Ventsel E., Krauthammer T. *Thin plates and shells*, CRC Press, Boca Raton, 2001
- Calladine C.R. *Theory of shell structures*, Cambridge University Press, Cambridge, 2007
- Iligge W. Stresses in shells, Springer, 1973

・ロット (母) ・ ヨ) ・ ・ ヨ)