
Stresses in curved bars

Stresses in curved bars are the results of acting of three internal forces: normal force
N , shear force V and bending moment M . The calculation of the �rst two can be made in
a regular way as in the case of a straigh bar. Thus we will focus on the third one which are
normal stresses due to bending. Determination of the stress formula is a statically indeterminate
problem which means that besides the equations of equilibrium the deformation of the bar needs
to be considered. There are three elements that must be determined: the shape of the stress
distribution on the cross-section, the location of the neutral line and the relation between the
bending moment and the value of the stress. We will start our considerations from the analysis
of deformation of an elementary part of the bar and then we will switch to the analysis of the
equilibrium of a part of the bar.

Fig. 1: Curved beam under pure bending

Let's consider a curved bar in a pure bending con-
ditions as show in the Fig. 1. From this bar, far from
the point of application of the load, we will cut an el-
ement described by the angle dθ. Before we start to
analyse the deformation of the element it is necessary
to make the following assumptions:

� transverse cross-section plane and normal to the
neutral line remains so after deformation,

� rotation takes place according to the neutral line,

� elongation and contraction of �bres as well as
stresses along lines of equal distance from the neu-
tral line are the same.

The angle which describe the cut element of the bar equals dθ (see Fig. 2). Since the length
of the element is small we can assume that its curvature is described with a circular arc. On
the drawing we can distinguish a central line passing through the centroid of the cross-section
and of the radius R0 as well as the neutral line O1O2 for which the stress are equal to zero and
the radius of which equals r. Since at this moment the position of the neutral line is not known
it is assumed that it does not corresponds to the central line. Besides an arbitrary �bre at the
radius ρ marked as A1A2 is selected. This �bre is at a distance y from the neutral line.

Fig. 2: Element of the beam

During the deformation the cross-section of
the bar rotates about small angle δdθ. To �nd the
relation between this angle and the deformation of
�bres of the bar the strains in the �bre A1A2 will
be analysed. Initial length of the �bre equals ρdθ.
The increase of the length of the �bre due to ro-
tation of the cross-section is equal to yδdθ. From
de�nition we know that the strain of the element
equals the ratio of the increase of the length to the
initial length, that is ε = ∆l/l. In this case we
have

ε =
A2A3

A1A2

=
yδdθ

ρdθ
(1)

Applying the Hooke's law the distribution of stress on the cross-section of the curved beam is
obtained in the form

σ = εE =
y

ρ

δdθ

dθ
E =

ρ− r

ρ

δdθ

dθ
E (2)
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Both E and (δdθ)/(dθ) are constant values, thus we can divide the formula (2) by them and
obtain the dimensionless stress in the form

σ̃ = 1− r

ρ
(3)

which gives the possibility to visualise easily the distribution of stress. From this formula it is
seen that it has a hyperbolic character. It is not the straight line like in the straight beams.
From the plot shown in Fig. 3 it is seen that stresses increase rapidly below the neutral axis for
small values of the radius.

Fig. 3: Stress distribution

For now we now what the stress distribution is but we
still do not know where the neutral axis is located and how
the stress value is related to the bending moment. For this
reason we will consider the equilibrium of a part of the beam
cut at location B seen in Fig. 1. The left hand side of the
beam will be considered.

There are six equations of equilibrium that can be writ-
ten in this case. However, most of them will not give us any
valuable information. According to Fig. 4 the only force act-
ing on the cut part of the beam is the elementary normal
force dN = σdA. For that reason the only force equation
will be that according to axis x∑

Fx = 0 →
∫
A

σdA = 0. (4)

Fig. 4: Analysis of stress

As to equations of moments the force σdA is par-
allel to the axis x and for this reason it will not gen-
erate any moment. The same force generates moment
according to axis y, however due to the symmetry of
the problem and the assumption of the plane bending
the total value will be equal to zero. The only equation
which will help to �nd the stress formula is the equation
of moments according to axis z. There are two compo-
nents which will appear in this equation: the moment
generated by the force σdA and the external load M∑

Mz = 0 → M −
∫
A

σydA = 0 (5)

These two equations contain the stress σ which were determined previously (2) from analysis
of deformation of the beam. By substituting them into equations of equilibrium we can get the
necessary information.

Let's start with the equation of forces (4). After putting constants outside the integral it
will take the form

E
δdθ

dθ

∫
A

y

ρ
dA = 0 (6)

Since the constants are di�erent from zero it is the integral that has to be equal to zero, that is∫
A

y

ρ
dA = 0 (7)
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Knowing, from Fig. 2, that y = ρ− r we can write∫
A

dA−
∫
A

r

ρ
dA = 0 (8)

The �rst integral is the area of the cross-section A. Since the radius of the neutral line r is a
constant value we can determine it from the above equation

r =
A∫

A

dA

ρ

(9)

Knowing the radius r we can determine the position of the neutral line which is y0 = R0 − r
and that was our �rst goal.

Now we may switch the the equation of equilibrium of moments (5) and substitute σ with
(2). The result will be

M − E
δdθ

dθ

∫
A

y2

ρ
dA = 0 (10)

Let's consider the integral alone. Knowing that y = ρ− r we have∫
A

y2

ρ
=

∫
A

ydA− r

∫
A

y

ρ
dA (11)

From previous analysis (see Eq. (7)) we know that the second integral equals zero. Moreover,
the �rst equation is the static moment S. Than the equation of equilibrium takes the form

M − E
δdθ

dθ
S = 0 (12)

Fig. 5: Normal forces at the

cross-section

When analysing the above equation it is seen that for loaded
beam the bending moment M is di�erent from zero. Both con-
stants E and (δdθ)/(dθ) are also di�erent from zero. If we want
this equation to be ful�lled the static moment S must be di�erent
from zero too. Since this moment equals zero for the centroidal
axis it means that in the problem of bending of curved bars the
centroidal axis do not coincide with the neutral axis; there is a
shift equals y0 with which we can calculate the static moment
S = Ay0. It should be noted that the shift of the two axes is a
consequence of the stress distribution. Since the maximum stress
on the outside �bres of the bar are much smaller that these on the inner side the area at which
the former works has to be bigger. Or in other words to have the equilibrium at the cross-section
the positive forces N+ have to equalise the negative ones N− as shown in Fig. 5.

To obtain the �nal formula for normal stress let's write the Eq. (12) in the form

δdθ

dθ
=

M

ES
(13)

and after substituting it to the Eq. (2)

σ =
y

ρ

δdθ

dθ
E =

y

ρ

M

ES
E =

y

ρ

M

S
(14)
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Therefore the design formula for the curved bars is

σ =
My

Sρ
(15)

in which M is the bending moment in the analysed cross-section, S is a static moment that
has to be calculated for a given shape of the cross-section, y is the distance from the neutral
axis to the �bre at which the stress is to be calculated and ρ is the radius of this �bre. Usually
the stresses are calculated at the outside and inside �bres which gives the maximum tensile
and compression stresses. If the position of the neutral line, at which the stress equals zero,
is known there is enough information to plot the stress distribution on the cross-section. The
distribution has a hyperbolic shape.
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